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It is known that one can determine the mode orders (i.e., the azimuthal order and radial order) of a partially
coherent LGpl beam (i.e., a partially coherent vortex beam) based on the measurement of the cross-correlation
function (CCF) and the double correlation function (DCF) together. The technique for measuring the CCF is
known. In this Letter, we propose a method for measuring the DCF. Based on the proposed method, the deter-
mination of the mode orders of a partially coherent LGpl beam is demonstrated experimentally.
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In the past decades, vortex beams have been explored ex-
tensively and applied in various fields, such as optical
manipulation[1], optical imaging[2], free-space data trans-
mission[3], quantum information transfer[4], and the detec-
tion of a spinning object[5]. The phase term expðilφÞ (l and
φ are the topological charge and azimuthal angle, respec-
tively) in a vortex beam imposes orbital angular momen-
tum (OAM) on the beam, and each photon of such a beam
has an OAM of lℏ[6]. Up to now, many methods based on
the measurement of the intensity distribution, diffraction,
or interference pattern of a vortex beam were proposed to
measure the OAM or l [7–10].
Partially coherent vortex beams were introduced by

Gori, Ponomarenko, and collaborators[11–13]. Partially co-
herent LG0l beams andLGpl beams are typical kinds of par-
tially coherent vortex beams. A partially coherent vortex
beam can be generated by imposing a vortex phase into
a partially coherent beam through a spiral phase plate[14,15]

or a spatial light modulator (SLM)[16]. More recently,
it was shown in Ref. [17] that one can generate a partially
coherent vortex beam with an arbitrary azimuthal index
using only an SLM. Partially coherent vortex beams
exhibit interesting properties, e.g., their cross-correlation
function (CCF) displays correlation singularities (i.e., ring
dislocations)[14]. The correlation singularity is defined as the
point where the magnitude of the CCF is zero, but the
phase is undefined. It was found in theory[18,19] and verified
in an experiment[20] that the magnitude of the topological
charge jlj of a partially coherent LG0l beam can be deter-
mined by measuring the far-field ring dislocations due to
the fact that jlj equals the number of ring dislocations.More
recently, it was demonstrated in Ref. [21] that one can
determine not only jlj but also the sign of l of a partially

coherent LG0l beam through the measurement of the mu-
tual correlation function (MCF) or CCF with the help of
cylindrical lenses. For a partially coherent LGpl beam

[22],
it was demonstrated both theoretically[23] and experimen-
tally[24] that the far-field ring dislocations equals 2pþ jlj.
It was demonstrated numerically that one can determine
the azimuthal and radial mode orders (i.e., p and jlj)
through measuring the CCF and the double correlation
function (DCF) together[25]. The technique for measuring
theMCF or CCF is known[20,21,24,26]. In this Letter, a method
is proposed for measuring the DCF, and we demonstrate
experimental determination of the mode orders of a parti-
ally coherent LGpl beam based on the proposed method.

The MCF of a partially coherent LGpl beam at z ¼ 0
(source plane) in a cylindrical coordinate system is
expressed as[16,22,23]
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where ρ is the radial coordinate and φ is the azimuthal
coordinate, ω0 is the beam width and δg is the coherence
width, p and l denote the radial and azimuthal orders,
respectively. Usually, l is called the topological charge.

With the help of the generalized Collins formula[27], we
can obtain the detail expression for the MCF Γðr1; r2Þ of a
partially coherent LGpl beam after passing through a par-
axial ABCD optical system (see Ref. [22]). The average
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intensity is obtained as hI ðrÞi ¼ Γðr; rÞ, and the normal-
ized MCF is obtained as[28]

μðr1; r2Þ ¼
Γðr1; r2Þ������������������������������hI ðr1ÞihI ðr2Þi

p : (2)

For the case of r2 ¼ −r1 ¼ −r, the MCF Γðr;−rÞ usually
is called the CCF[14]. For the case of r1 ¼ r, r2 ¼ 2r, the
MCF Γðr; 2rÞ is called the DCF[25]. As shown in
Refs. [18,19], the MCF Γðr; 0Þ and the CCF Γðr;−rÞ
display similar distributions.
The distribution of the far-field normalized MCF is sim-

ilar to that in the focal plane. We assume that the partially
coherent LGpl beam is focused by a thin lens with focal
length f , which is located at z ¼ 0, and the receiver plane
is at z ¼ f . Then, we obtain A ¼ 0, B ¼ f , C ¼ −1∕f , and
D ¼ 1. We calculate in Fig. 1 the normalized average
intensity and modulus of the correlation functions of a
partially coherent LGpl beam with f ¼ 40 cm, p ¼ 1,
l ¼ 1, ω0 ¼ 0.57 mm, and δg ¼ 0.8 mm in the focal plane.
Figure 1(a) clearly shows that the average intensity of a
partially coherent LGpl beam does not reveal any informa-
tion about p and l. Figures 1(b) and 1(c) show that the
distributions of the normalized MCF and CCF display
ring dislocations are as expected, and the number of dark
rings is equal to 2pþ jlj, as expected[23,24]. Figure 1(d)
shows that the DCF also displays ring dislocation, while
only one dark ring exists in this case.
Figure 2 shows the distribution of the normalized modu-

lus of the DCF of a partially coherent LGpl beam for differ-
ent l with p ¼ 1;ω0 ¼ 0.57 mm, and δg ¼ 0.8 mm in the
focal plane. One sees from Fig. 2 that only one dark ring
exists for different l, even for l ¼ 0 (without the vortex
phase), while the size of the dark ring decreases with the
increase of l. Figure 2 indicates that the azimuthal model

order l does not affect the number of the dark rings in the
normalized DCF. Figure 3 shows the distribution of the
normalized modulus of the DCF of a partially coherent
LGpl beam for different p with l ¼ 6, ω0 ¼ 0.57 mm,
and δg ¼ 0.8 mm in the focal plane. One finds from Fig. 3
that the number of dark rings in the distribution of the
normalized DCF increases as p increases, and its value
equals p. Thus, as indicated in Ref. [25], one can determine
the value of p of a partially coherent LGpl beam through
measuring its DCF in the focal plane. Then, one can
determine jlj through measuring the MCF or CCF in
the focal plane.

Now, we demonstrate the determination of the azimu-
thal and radial mode orders of a partially coherent LGpl

beam experimentally. The experimental setup for generat-
ing a partially coherent LGpl beam and measuring the

Fig. 1. Distributions of the normalized average intensity and
modulus of the correlation functions of a partially coherent
LGpl beam with p ¼ 1, l ¼ 1, ω0 ¼ 0.57 mm, and δg ¼ 0.8 mm
in the focal plane. (a) I ðrÞ, (b)

��μðr; 0Þ��, (c)
��μðr;−rÞ��, and

(d)
��μðr; 2rÞ��.

Fig. 2. Distribution of the normalized modulus of the DCF of a
partially coherent LGpl beam for different l with p ¼ 1. (a) l ¼ 0,
(b) l ¼ 1, (c) l ¼ 2, and (d) l ¼ 3.

Fig. 3. Distribution of the normalized modulus of the DCF of a
partially coherent LGpl beam for different p with l ¼ 6 in the
focal plane. (a) p ¼ 0, (b) p ¼ 1, (c) p ¼ 2, and (d) p ¼ 3.
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correlation functions is shown in Fig. 4. A light beam
from a diode-pump solid-state laser (λ ¼ 532 nm) first
propagates through a neutral density filter and a beam
expander and then is reflected by a reflecting mirror
(RM). The reflected beam from the RM is focused by a
thin lens L1 onto a rotating ground-glass disk (RGGD),
producing incoherent light. The incoherent light from
the RGGD propagates through a thin lens L2 and a Gaus-
sian amplitude filter, then becomes a partially coherent
beam with a Gaussian beam profile[29]. The generated par-
tially coherent Gaussian beam goes towards an SLM. The
SLM plays the role of a grating with a fork pattern, which
is calculated through computer-generated holograms. A
circular aperture is used to select the first-order diffraction
pattern of the light field from the SLM, and then, a par-
tially coherent LGpl beam is obtained[16,24]. The generated
partially coherent LGpl beam is focused onto a charge-
coupled device (CCD) by a thin lens L3 with a focal length
f 3 ¼ 40 cm. The CCD is used to measure the average
intensity, MCF, CCF, and DCF. The coherence width
of the partially coherent LGpl beam is controlled by vary-
ing the focused beam’s spot size on the RGGD[18,29].
With the help of the Gaussian moment theorem[28], the

normalized MCF of a partially coherent beam is related
with the normalized fourth-order correlation function
by the following expression,

gð2Þðr1; r2Þ ¼
hI ðr1ÞI ðr2Þi
hI ðr1ÞihI ðr2Þi

¼ 1þ jμðr1; r2Þj2; (3)

where I ðrÞ and hI ðrÞi denote the instantaneous intensity
and the average intensity at position r, respectively.
In our experiments, a CCD with a pixel size 4.4 μm×

4.4 μm captures 4000 frames in total. Each frame repre-
sents one realization of the beam cross section and is read
out as an intensity matrix I nðx; yÞ by Matlab software.
Here, n is the sequence number of the frames ranging from
1 to 4000, and x and y are the pixel spatial coordinates of the
frame. We set the coordinate origin (0,0) of each frame at
position ð2m þ 1; 2m þ 1Þ. Then, we have −2m ≤ x ≤ 2m
and −2m ≤ y ≤ 2m, with m ≥ 0 being a non-negative
integer.
The average intensity can be obtained from the follow-

ing expression,

hI ðrÞi ¼
XN
n

I ðrÞ∕N ; (4)

where N is the total number of captured frames. The term
hI ðr1ÞI ðr2Þi can be obtained by the following expression,

hI ðr1ÞI ðr2Þi ¼
XN
n

Inðr1ÞI nðr2Þ∕N : (5)

Then, we can obtain following expression for the square of
the normalized modulus of the MCF,

jμðr1; r2Þj2 ¼
N

PN
n I nðr1ÞI nðr2ÞPN

n Inðr1Þ
PN

n I nðr2Þ
− 1: (6)

Based on Eq. (6), by setting r1 ¼ r and fixing r2 at the
coordinate origin, one can obtain the square of the normal-
ized modulus of MCF jμðr; 0Þj2[26]. By measuring the aver-
age intensity hI ðρÞi and jμðρ; 0Þj2 in the source plane, one
can obtain the values of the beam width and coherence
width of the generated partially coherent LGpl beam, re-
spectively, and in our experiment, they are ω0 ¼ 0.57
and δg ¼ 0.8 mm.

One can obtain the new matrix I nð−rÞ by rotating the
intensity matrix I nðrÞ 180 deg. Based on Eq. (6), we can
obtain the square of the normalized modulus of the CCF
jμðr;−rÞj2. More information about measurements of the
MCF and CCF can be found in Refs. [24,26], respectively.

Now we introduce a method for measuring the DCF. In
order to measure the DCF, we first extract a sub-matrix
I 0nðx 0; y0Þ with dimensions ð2m þ 1Þ× ð2m þ 1Þ from the
average intensity matrix I nðx; yÞ, and the sub-matrix
elements are composed by the elements from line
m þ 1 to 3m and row m þ 1 to 3m of I nðx; yÞ,
e.g., −m ≤ x 0 ≤ m, −m ≤ y0 ≤ m,

I 0nðx 0;y0Þ ¼

0
BBBBB@

ðx 0−m;y0mÞ ðx 0−mþ1;y
0
mÞ � � � ðx 0m;y0mÞ

ðx 0−m;y0m−1Þ ðx 0−mþ1;y
0
m−1Þ � � � � � �

� � � � � � � � � � � �
ðx 0−m;y0−mÞ � � � � � � ðx 0m;y0−mÞ

1
CCCCCA

¼

0
BBBBB@

ðx−m;ymÞ ðx−mþ1;ymÞ � � � ðxm;ymÞ
ðx−m;ym−1Þ ðx−mþ1;ym−1Þ � � � � � �

� � � � � � � � � � � �
ðx−m;y−mÞ � � � � � � ðxm;y−mÞ

1
CCCCCA
:

(7)

The sub-matrix I 0nð2x 0; 2y0Þ with dimensiona ð2m þ 1Þ×
ð2m þ 1Þ is composed from the matrix elements I nðx; yÞ
of the odd line and row, which can be expressed as

Fig. 4. Experimental setup for generating a partially coherent
LGpl beam and measuring the correlation functions. NDF, neu-
tral density filter; BE, beam expander; L1, L2, L3, thin lenses;
GAF, Gaussian amplitude filter; CA, circular aperture; PC1,
PC2, personal computers.
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I 0nð2x 0; 2y0Þ
¼ I 00nðx 00; y00Þ

¼

0
BBBBB@

ðx 00−m; y00mÞ ðx 00−mþ1; y
00
mÞ � � � ðx 00m; y00mÞ

ðx 00−m; y00m−1Þ ðx 00−mþ1; y
00
m−1Þ � � � � � �

� � � � � � � � � � � �
ðx 00−m; y00−mÞ � � � � � � ðx 00m; y00−mÞ

1
CCCCCA

¼

0
BBBBB@

ðx−2m; y2mÞ ðx−2mþ2; y2mÞ � � � ðx2m; y2mÞ
ðx−2m; y2m−2Þ ðx−2mþ2; y2m−2Þ � � � � � �

� � � � � � � � � � � �
ðx−2m; y−2mÞ � � � � � � ðx2m; y−2mÞ

1
CCCCCA
;

(8)

where x 00 ¼ 2x 0 and y00 ¼ 2y0. In order to show the matrices
clearly, we plot a graphical scheme of the transformations
of the intensity matrix in Fig. 5 (a 9 × 9 matrix as an ex-
ample). The matrices with green, yellow, and red elements
denote the intensity matrix I nðx; yÞ; the first sub-matrix
I 0nðx 0; y0Þ, and the second sub-matrix I 0nð2x 0; 2y0Þ, respec-
tively. We note that some elements of the matrices overlap
in Fig. 5.
By inserting Eqs. (7) and (8) into Eq. (6), one obtains,

jμðr0; 2r0Þj2 ¼ jμðx 0; y0; 2x 0; 2y0Þj2

¼ N
PN

n I nðx 0; y0ÞI nð2x 0; 2y0ÞPN
n I nðx 0; y0Þ

PN
n I nð2x 0; 2y0Þ

− 1: (9)

Equation (9) indicates that one can measure the square of
the normalized modulus of the DCF jμðr0; 2r0Þj2 by the ex-
perimental setup shown in Fig. 4. The Matlab software is
used for matrix disposal.
The experimental results of the average intensity and

square of the normalized modulus of different correlation
functions of the generated partially coherent LGpl beam
with p ¼ 1, l ¼ 1, ω0 ¼ 0.57 mm, and δg ¼ 0.8 mm in
the focal plane are shown in Fig. 6. The experimental

results of the square of the normalized modulus of the
DCF of the generated partially coherent LGpl beam with
p ¼ 1, ω0 ¼ 0.57 mm, and δg ¼ 0.8 mm for different l in
the focal plane are shown in Fig. 7. The experimental re-
sults of the square of the normalized modulus of the DCF
of the generated partially coherent LGpl beam with l ¼ 6,
ω0 ¼ 0.57 mm and δg ¼ 0.8 mm for different p in the focal
plane are shown in Fig. 8. We see that the experimental
results shown in Figs. 6–8 are consistent with the numeri-
cal results shown in Figs. 1–3. As expected, the measured
intensity has a solid beam profile [see Fig. 6(a)], the num-
ber of the dark rings in the measured MCF or CCF equals
2pþ jlj [see Figs. 6(b) and 6(c)], and its value in the

Fig. 5. Schematic for the transformations of the intensity ma-
trix. The matrices with green, yellow, and red elements denote
the intensity matrix I nðx; yÞ, the first sub-matrix I 0nðx 0; y0Þ, and
the second sub-matrix I 0nð2x 0; 2y0Þ, respectively.

Fig. 6. Experimental results of the average intensity and square
of the normalized modulus of different correlation functions of
the generated partially coherent LGpl beam in the focal plane
with p ¼ 1 and l ¼ 1. (a) I ðrÞ, (b) jμðr; 0Þj2, (c) jμðr;−rÞj2,
and (d) jμðr; 2rÞj2.

Fig. 7. Experimental results of the square of the normalized
modulus of the DCF of the generated partially coherent LGpl

beam with p ¼ 1 for different l in the focal plane. (a) l ¼ 0,
(b) l ¼ 1, (c) l ¼ 2, and (d) l ¼ 3.
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measured DCF equals p (see Fig. 8) and is independent of l
(see Fig. 7). As shown in Ref. [21], the sign of l of a par-
tially coherent LGpl beam also can be determined through
measuring the MCF or CCF of such a beam after passing
through a couple of cylindrical lenses.
The numerical results in this Letter show the normal-

ized modulus of the correlation functions, but the exper-
imental results can only show the square of the normalized
modulus of the correlation functions, which is the main
reason why the numerical results and experimental results
show some discrepancies. We may improve the experimen-
tal results by measuring the imaginary and real parts of
the correlation functions by the method developed just re-
cently[30], and we leave this for future study.
In conclusion, a method is proposed to measure the

DCF of a partially coherent beam, and experimental mea-
surements of the MCF, CCF, and DCF of a partially co-
herent LGpl beam are demonstrated. Our experimental
results confirm the numerical prediction that one can de-
termine the radial mode order of a partially coherent LGpl
beam through measuring the DCF in the focal plane and
then determine its azimuthal mode order l through meas-
uring the MCF or CCF in the focal plane. The correlation
functions carry rich information about the vortex phase,
and our results may be useful for information transfer and
recovery in turbulent media, since a coherent vortex beam
will become a partially coherent vortex beam upon propa-
gation in turbulent media.
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